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ABSTRACT 

Consider the 0-correspondence from GSp(4) to GSO(6). We prove that locally 
over a nonarchimedean field F, this correspondence is injective on generic 
representations (i.e. with Whittaker model) ofGSp(4, F). We use this to show 
the strong multiplicity one property for irreducible, automorphic, cuspidal 
representations of GSp(4, A), which are generic. 

Introduct ion 

Let G = GSO(6), the connected component of the group of similitudes of a 

split quadratic form in six variables. Let F be a local nonarchimedean field. 

Our main theorem (Theorem 2.1) says that for an irreducible, admissible 

representation tr of  GF, the space of  certain linear fmactionals is at most one 

dimensional. Let us describe this space. Write the elements of G as matrices 

g ~ GL(6), satisfying 'gw6 g = / t  (g)w6, 

1 
1 

W 6 

Let L be the space of column vectors in four dimensions, equipped with the 

quadratic form defined by 
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I 1 
1 

w4= 1 

1 

Let e EL  satisfy tew4e = 1. Consider the following subgroup R of G: 

/ [ l" l  / R =  r =  h v ~ G  h e = e  . 
v ~ L  

1 

Define x0(r) = tvw4e. This is a rational character of R. Let ~, be a nontrivial 
character of F. The above space of linear functionals is 

Lxo.~, = {1~, ~ V* I l~,(a(r)v) = ~(Zo(r))l~,(v); v ~ V,,, r ~ R  } 

and the assertion is that Lxo.~, is at most one dimensional. 
The functionals l~, arise in the following situation. Consider the "dual pair" 

(GSp(4), GSO(6)). Consider the local 0 correspondence, and let O(tr) be the set 
of equivalence classes of irreducible representations of GSp(4, F) which 
correspond to tr under the local 0-map, then we show that the number of 
generic elements of O(tr) (i.e. those with standard Whittaker model) is less than 
or equal to dim Lxo,~, (Theorem 1.3). Thus tr has at most one generic 0-lift to 
GSp(4, F). We remark that Rallis JR] proved the Howe duality conjecture for 
many cases, and our case is not one of them (and also (GSp(4), GSO(6)) is not 
exactly a dual pair). We prove the uniqueness theorem in section two. We use 
the Gelfand-Kazhdan method (explained in [B.Z] part III). 

H. Jacquet, I. Piatetski-Shapiro and J. Shalika show in a work in preparation 
[J. PS. S] that under the global 0-correspondence from GSp(4) to GSO(6), 
irreducible, automorphic cuspidal representations of GSp(4,A) (ABthe 
adeles of a global field k), which are generic, have a nonzero image (and only 
these). Also an irreducible, automorphic, cuspidal representation tr of 
GSO(6, A) is in the image of the 0-correspondence from GSp (4) if 

fl~ ~°(r)~-l (z°(r)dr~O'  ~oEa 
kl RA 

(~ is a nontrivial character of k \ A .  In the definition ofz0, we choose e ELk).  
This explains the global set up (Propositions 1.1, 1.2). Now, GSO(6) is up to 
multiples by elements of the center, the same as { + 14}\ GL(4), and we can use 
the properties of the above 0-correspondence to consider the question of the 
strong multiplicity one theorems for generic representations of GSp(4~ A). 
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Using the similar property GL(n) [J. Sh] and the multiplicity one theorem for 
GL(n) [Sh] and for GSp(4), for generic representations [PS], one immediately 
reduces the question to one of the injectivity of the above 0-map. Locally in the 
archimedean case, the injectivity is proved in [J. PS. S], and, as mentioned 
above, in the nonarchimedean case it is proved here. 

§o. 

1. 

then 

Notations and preliminaries 

Let F be a field (Char F ~ 2). Put 

j = ( O  

- I .  

GSp(2n, F) = (g ~M(2n, F)[tgjg = I~(g)J, / t (g)~F*}.  

2. Let F b e  a field and Xa  finite dimensional vector space over F, equipped 
with a nondegenerate symmetric form (,), then we denote 

GO(X) = {g E GL(X) I (gxl, gx2) = / t  (g)(xl, x:); VXl, x2 E X,/z (g) E F* }. 

We denote the connected component  of GO(X) by GSO(X) and the subgroup 
of those g in GSO(X) with/t(g) = 1, by SO(X). The groups of this type that we 
encounter here are with dim X = 6, 4 with a split form, so we denote them for 
short GSO(6), GSO(4) respectively. 

For any field F we have an injection 

Z2\ GL(4, F) "-~ GSO(6, F) 

and if C denotes the center of GSO(6, F)  then GSO(6, F) --- C . I m  l. The 
injection I is defined as follows. Let GL(4, F) act from the left on the four 
dimensional space V. The space X = AZVis six dimensional. Let el . . . . .  e4 be a 
basis for V over F. The space A4V is one dimensional. The form on X × X 
defined by v~ ̂  V 2 A U l ^ / ' /2  = (~¢1 A V2, U 1 ̂  U2)e I A e 2 A e 3 ^ e 4 is symmetric, non- 
degenerate and splits over F. The injection I is defined by g-~A2g, g ~  
Z2\ GL(4, F). Note that AEg preserves (,) up to det g. 

3. Let F b e  a local field and gt a nontrivial character o fF .  Let Sp(2n, F)  act 
from the right on  Z, a 2n dimensional space over F,  preserving the symplectic 
form ~ , ). Let Z = Z + + Z -  be apolar izat ion of  Z,  that is  Z +, Z -  are 
maximal isotropic subspaces o f  Z.  Let to~, be the (smooth)Weil  representation 
of S'p(2n, F), corresponding to ~t. It acts ~in S(Z+), the Schwartz-Bruhat 
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functions of Z +. There is also an adelic analogue. For details, see for example, 
[H. PS], where also the notions of reductive dual pairs and the local and global 
0-correspondences are explained. Here we need only the following modified 
case. 

4. We consider the "pair" (GSp(4), GSO(6)). Let GSp(4) act on the four 
dimension space Y, preserving up to nonzero scalars the symplectic form 
( , ). Let GSO(6) act on the six dimensional space X preserving up to 
nonzero scalars the quadratic form (,). The space Z = Y ® X is symplectic of 
dimension 24, with symplectic form ( , ) ® ( , ), and we have a homo- 
morphism GSp(4) × GSO(6)---- GSp(Z) with kernel {tI4, t-~IJI t ÷ 0}. Let F 
be a local field. We modify to~, to be a representation to of GSp(4, F) × 
GSO(6, F). Let Z = Z  ÷ + Z -  be a polarization. The space of 09 is 
S ( Z + × F * ) ,  the Schwartz-Bruhat functions on Z + X F  *. For ~ 
S(Z  + × F*), set eat(z +) = e~(z +, t). For a = (g, I) or a = (I, h) in GSp(4) X 
GSO(6) with similitude factors 1, we define 

(to(a) ~)(z +, t) = (toe(a) ~t)(z +) 

and for an element a of  the form 

Il2 

(in GSp(24, F)), 

(to(a) ¢,)(z + , t ) =  ~b(z +, ty -  ~). 

We construct in a similar fashion the representation in the adelic case. We also 
construct the 0-series and the 0-lifts. Let k be a global field and A its ring of 
adeles, then for ~ES(Z~ × A*), we define 

O~(g, h) = ~ to(g, h)~(z +, t); g~GSp(4,  A), h EGSO(6, A) 
z+6Z~ + , t~.k* 

and for a cusp form ~ on GSO(6, A) the function 

--. f O~(g, h)~(h)dh g 
J G  SO(6,k)\ GSO(6,A ) 

defines an automorphic form on GSp(4, .4). When ~ varies in an irreducible, 
automorphic, cuspidal representation of GSO(6,A) and ~ varies in 
S(ZA + ×A*), these forms generate an automorphic representation of 
GSp(4, .4), denoted by 0(o). (Similarly in the other direction.) 
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5. Let k be a global field. An automorphic representation rr of  GSp(4, A) is 
said to be generic if 

where 

Sv~tr, ~°(u)~-~(u)du =/= 0, (oE~t 

t[lxa l t 1 c Y E GSp(4) U =  u =  1 

- x  l 

is a nontrivial character of  k l A  and ~u(u) = ~u(x + y). 

Let F be a local field. An admissible representation n of GSp(4, F)  is said to 
be generic if there is a linear functional l on the space o f  n, V~, satisfying 

l(rc(u)v) = ¥ (u ) l ( v ) ,  v ~ v . ,  u E U. 

I is called a Whittaker functional for n. ( I f F  is archimedean l is assumed to be 
continuous in the C ~ topology.) 

§1. Motivations and applications 

We describe how the functional l w comes into play when considering 
0-correspondence between GSp(4) and GSO(6). This is one of the subjects of  
[J. PS. S]. 

Let F b e  a field and Xa  six dimensional vector space regarded as an algebraic 
group over F. Assume that X is equipped with a nondegenerate symmetric 
form (,), which splits over F.  Write 

(1.1) X -- Span{e0} + L + Span{e_o} 

where e + o E XF are isotropic, (eo, e_ 0) -- 1 and L is the orthogonal complement  
of  Span{eo} + Span{e_o}. Denote by GSO(6) the connected component  of the 
group of similitudes of (X, (,)). We let GSO(6) act on X from the left and we 
write its elements as matrices according to the decomposit ion (1.1). Consider 
the subgroup 

{i (1.2) R -  r =  h v ~GSO(6)  l h e = e  

1 
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where e ELF is fixed such that (e, e) = 1. In (1.2) we identify v with a general 

element of L, h E SO(L) and tu is the transposed of - h - 1. v, i.e., the element 

of L* which sends l ~ L  to - (h -~v , l ) .  Consider the following rational 

homomorphism from R to F (notation of (1.2)), 

(1.3) Zo: r~ (v , e ) .  

Let k be a global field and A its ring of adeles. Let ~v be a nontrivial character 

of  k\A.  Let a be an irreducible, automorphic cuspidal representation of 

GSO(6, A). Define for (o E a 

l~,(to) = f R,\R. ~o(r)~-l(yo(r))dr. 

(This integral converges absolutely since ~0 is a cusp form.) Denote by O(a) the 

automorphic representation ofGSp(4, A) obtained by the 0-correspondence 

(see section 0). The functional l~, arises when we consider the case where O(a) is 

generic. 

PROPOSITION 1.1. Assume O(o) is generic, then 1~, is nontrivial on a. 

PROOF. Let ~, be a nontrivial character of  k \ A. We know that the following 

Fourier coefficient is nontrivial on 0(o), 

f v ,  ~-'(u)~(u)du, ~EO(a), (1.4) W~ = \v, 

Let ~(g) = foso~6.k)~oso~6.~) O*(g, h)dh ; g E GSp(4, A), f E  a. We realize the 
action of the Weil representation to on the space S(Z + × A*) where Z + = 

Y+® X = X ~9 X, and Y+ is a maximal isotropic subspace of the four 

dimensional symplectic space Y. The formulas we need are as follows. Let 
cb E S ( Z ;  × A*), h E GSO(6, A ), kt(h )-the similitude factor of  h, g E GL(2, A ), 
yEA*  and S = tS. Then 

o9(1, h)4~(x~, x2; t) = lu(h)l-3¢(h-~xt, h-~XE;lt(h)t), 

((o o) ) (1.5) to , I r~(x~,x2;t)= Idetgl3~((x. x2)g;y-~t), ytg- 1 

")) o9 , 1 4~(xl, x2; t) = q/t(tr Gr(Xl, x2)S)4(Xl, x2; t), 
12 

1 < i , j  < 2. We first compute the partial Gr(xl, x2) is the matrix ((xi, xj)), 
Fourier coefficient 
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W'c(g)=fv~tvA~-~(v)~(vg)dv; V = { ( ~  / $ 2 ) t S = S } .  

Using (1.5) (and the definitions in section 0), we get 

(I.6) fG Y, co(g, h)4~(xl, x2; t)f(h)dh 
W~(g) = SO(6,k)\GSO(6,A) (x,,x2;t)~Xo 

where 

Xo= {(xt, x2; t )~X2×k ' l tGr(x l ,  x2)=(O0 01) } . 

Xo is the union of two orbits O0, O1 under GSO(6, k). The elements of Oo are of 
the form (0, x; t), and those of O~ have the property dim Span{xl, x2} = 2.We 
have 

fk  ~-'(u)W'~ 0 1 du (1.7) We = ~A 1 " 

- u  1 

It is easy to see that the contribution of Oo to We is zero. For Oj, pick the 
representative (eo, e; 1). Its stabilizer in GSO(6) is 

(v,e)= 0 
R ' =  h ~GSO(6) h . e = e  J" 

Using this and substituting (1.6) in (1.7) we get 

fk  f co(l,h)4~(eo, Ueo+e;1) f n f(r'h)dr'dhdu. W~ ~--- ~A ~//- I ( u )  ,,J R]\GSO(6,A) k\R,~ 

Now note that 

r~ = I 
1 ute -- ½u 2 

I -- ue 
1 

has the property r~ -~ "(eo, e; 1) = (eo, ueo + e; 1), and so co(l, r,h)4~(eo, e; 1) = 
co(l, h)4~(eo, Ueo + e; 1). Changing variables in h, we obtain 
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W¢= f R,xoso(6a) °9(1, h )~(eo, e;1) f R~\RA ~-I(Xo(r))f(rh ) drdh 

f o9(1, h)4~(eo, e; l)lv,(a(h)f)dh. 
J R  ~\GSO(6,A) 

Since W~ ~ 0, then I v, is nontrivial on a. 1"3 

In a similar fashion one proves 

PROPOSn'ION 1.2. Let n be an irreducible, automorphic, cuspidal represen- 
tation of  GSp(4,A). Assume that n is generic. Then the P-lift of  n, O(n) to 
GSO(6, A) has a Whittaker model (and in particular O(tt) ~ 0). 

PROOF (sketch). As in Proposition 1.1, compute the Whittaker Fourier 
coefficient We of an element ~ ~ O(n). This time realize to in S ( Z f  × A*) and 
Z ÷ =  Y ® X  ÷, where X + is a maximal isotropic subspace of X. Now 
GSp(4, A) acts linearly. We get for We a formula similar to the one in the end of 
the proof  of Proposition 1.1. If 

f ~  O*(g, h)~o(g)dg, ~o ~ n 
~ ( h )  = s~4,k)X~s¢,,A) 

then 

We = YX,\OS~4,A) to(g, 1)4~(Zo; 1)w~,(g)dg; 

z0 is a certain point in Zk + , H is the stabilizer of z0, and we is the Whittaker 
function of  tp. Now it is possible to see that this integral does not vanish 
identically. [] 

REMARK. Propositions 1.1 and 1.2 are parts of the following more com- 
plete theorem. 

THEOREM ([J. PS. S.]). (i) Let n be an irreducible, automorphic, cuspidal 
representation of  GSp(4, A), then O(n), the P-lift to GSO(6, A), is nonzero iff n 
is generic. 

(ii) Let a be an irreducible, automorphic, cuspidal representation of  
GSO(6, A ), then a = O(n), for an irreducible, automorphic, cuspidal represen- 
tation 7t ofGSp(4, A ) iff 1 v, is nontrivial on a. 

We now turn to the local analogue of Proposition 1.1. 
Let F be a local nonarchimedean field and a an irreducible admissible 
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representation of GSO(6, F). Let ~ be a nontrivial character ofF. We consider 
for tr linear functionals l~, on the space of a, Vo, satisfying 

(1.8) l~,(a(r)v) = ~'(Zo(r))l~,(v), r ~R ,  v E Vo. 

Let zt be an irreducible admissible representation of GSp(4, F). Following 
[J. PS. S] we say that n is a Howe-lift of tr if 

(1.9) HOmGsv~4,F)xGSO(6,F)(09 ® (Tt ® 0), C) ~ 0 

(to is the appropriate local Weil representation; See section 0). 
The functional l~, in (1.8) enters in the question of the uniqueness of a generic 

Howe lift of a to GSp(4, F). Denote by [a] the set of equivalence classes of 
generic Howe lifts of a to GSp(4, F). 

THEOREM 1.3. Let tr be an irreducible admissible representation of  
GSO(6, F). Then the cardinality of[a] is less than or equal to the dimension of  
the space of  functionals 1~,. 

PROOF. The proof is a local analogue of the proof of Proposition 1.1. Let rt 
be an irreducible admissible representation of GSp(4, F) which is a generic 
Howe lift of a. Then by (1.9) we get a morphism 09 ® # ~  which has the 
appropriate equivariance properties. Composing this morphism with the 
Whittaker functional of 7~ we get a bilinear form ofS(Z~ X F*) × V0 (Vo-- the 
space of #) satisfying 

(1.10) (09(1, h)4~,#(h)v)=(4~,v); h EGSO(6, F), vEVo, 

]]) 1 • Y ,1 ~ ,v  = ~ ( x + y ) ( ~ , v )  0.11) w 0 1 0 

0 - x  1 

Here ¢~ES(Z~ X F*) - -  the space of 09. We take Z + as in the proof of 
Proposition 1.1 so that we have the formulas (t.5) (locally). Put E - -  
S(Z + X F*). (1.1 1) means that (,) is a bilinear form on Es,v, X Vo, where 

S = t ( I  0 /X2 ) EGSp(4, F) t , ~ ( ~  /X2)= ~v(tr (00 01)X ) 

and Es,~, denotes the Jacquet module of E with respect to the group S and the 
character ~. (See [B.Z], section 2.30.) Denote by 09s,v, the representation of the 
parabolic subgroup 
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of GSp(4, F) in Es,~, which is obtained from o~. Put 

i, ° °) t 
X0 is closed in Zr  + × F*. Let P act in S(Xo) according to the formulas ofog. We 

have an isomorphism of representations of P, Ogs.~, ~-- S(Xo). It is given by 
a : ¢ ~ Resxo ~. a is well defined. The exact sequence ([B.Z], section 1.8) 

O---, S (Z~ X F* \Xo)~  S (Z~  × F*)lrestrieti°n----~ S(Xo)----~O 

shows that a is an isomorphism. Thus we may think of(,) as a bilinear form of 

S(Xo) X V~ satisfying 

(1.12) (o9(1, h )¢, #(h )v) = (~, v), 

(1.13) t O9 

1 u 

1 

1 

--U 

,1 

1 
~' V t = 

v), 
with similar notations as in (1.10), (1.11), and we write 09 for Ogs.~,. GSO(6, F) 
acts in S(Xo) by left translations. Let A be the direct product 

{ U 
1 

1 
--U 

1 lu F} × GSO(6, F) 

and consider the representation ~ -  l ® 6 of A on V~. The space of bilinear 

forms satisfying (1.12), (1.13) is isomorphic to I(a, ~,)= HomA (~,-1 ® ~, 

S*(Xo)). (S*(Xo) denotes the space of A smooth distributions on X0, i.e., 
distributions on X0 which have open stabilizers in A.) As in the proof of 

Proposition 1.1, X0 is the union of  two orbits under A, Oo U Oi. The elements 

of Oo are of the form (0, x; t). The elements (xl, x2; t) of  O~ have the property 

that x~, x2 are linearly independent. Since Oo is closed in Xo, we have by ([B.Z]) 
the exact sequence 

0 ---, HOmA (~ '-I  ® 0, S*(Oo)) -* l (m ~') ~ nomA(g -l ® #, S*(OI)). 
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For ~ E S(O0), we have 

09 I 
1 u 

1 
1 

- - U  

,1 

1 

4~ = 4~, 

9"(x)~0~(y)= [/A(h)[-3~O~(h)v h . y .  ; hEGSO(6,  F), y ~ 0 1 .  

This shows that ~0~ is determined by the linear functional 

P(v) = ~ov(e0, e; 1) 

which, by (1.15), satisfies the condition (1.8). The proof of the theorem is now 

complete. [] 

In the next section we show that the space of linear functions (1.8) is of  

dimension at most one. This will prove: 

COROLLARY. Let cr be an irreducible admissible representation of  
GSO(6, F) and assume it has a generic Howe-lift to GSp(4, F), then this lift is 
unique. 

Going back to the global case let us consider the injectivity property of the 0- 

correspondence from generic representations of GSp(4, A ) to GSO(6, A). 

THEOREM 1.4. Let n~, ~2 be two irreducible, automorphic cuspidal, generic 

representations of  GSp(4,A). Let 0(n~), i =  1,2, denote the O-lift of  ni to 
GSO(6, A ). Assume that O(rt,) are cuspidal and that O(tq) = O(n2), then nL = ~2. 

(1.14) 

This implies that 

(1.15) 

then HomA(9" -I ® t~, S*(Oo)) = 0. Thus we have an injection 

I(a; 9") ~ HomA(9" -~ ® 8, S*(O0). 

Now take 0 ~ l E HomA (9'- 1 ® #, S*(O~)). Let v ~ V~ and/~ its image under I in 

S*(O0. Take the representative (e0, e; I) for O1 that we used in Proposition I. 1. 
Since its stabilizer and A are unimodular, then l~ is determined by an A-smooth 
function ~0~ on O1, once we fix an invariant measure dy on OI. We have 

= ~o~(y )c~(y )dy. 
, d O  I 
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PROOF. We should remark first that 0(it;) is irreducible. Indeed if 0(it;) = 
(3. o'/,. is a direct sum decomposit ion to irreducible, automorphic cuspidal 
representations of GSO(6, A), then all the or/,. are locally equivalent at almost 
all places (see [H.PS]). By the strong multiplicity one theorem ([J.Sh]) all the 
at,. are isomorphic and by the multiplicity one theorem ([Sh]) there is only one 
summand  in the decomposition. (Recall that PGSO(6) = PGL(4).) Put 0(it0 = 
0(it2) = a. Then 

(1.16) YGsot6,k)~sot6,A) f GS~4,k)~GSv~4,a) O¢'(g, h )q~(g)f(h )dgdh~/~O 

where ~a ~ It/and f E  a. (1.16) implies that 

HomGsvt4,a)x~SO~6.A)(to ® lti ® 8, C) # 0, i = 1, 2. 

This implies that there is a place v such that 

HOmGS~4.k, xCSOt6,k,)(tov ® 7ti,v ® ~rv, C) ~ 0, 

i.e., that It/,v is a generic Howe-lift of tr~ to GSp(4, k0. In [J.PS.S] it is shown 
that if v is archimedean then It/,~ is uniquely determined by the parameters of 
a,. (See the following remark.) By the Corollary to Theorem 1.3 it follows that 
for v nonarchimedean It,,v "~ n2,v. Thus It, and n2 are isomorphic and hence 
equal by the multiplicity ot~ ' theorem for genetic representations of GSp(4, A ) 
([PS]). [] 

REMARK. We sketch the proof  of [J.PS.S] of  the injectivity in the archime- 
dean case. Put k~ = F, ~ = or, It/,, = It, to~ = to. Consider the action of co on 
C~(F*) ® S(Z~ ) (®- induct ive  tensor product). Then we are given a con- 
t inuous trilinear form T on (C~°(F *) ® S(Z~ )) ® V~® Vo, satisfying 

T(to(g, h )(~ ® 4,) ® It(g)v ® cr(h )u) = T((~, ® 4,) ® v ® u). 

(V., V° are the respective subspaces of smooth vectors.) This with h = 1 and 

shows that there is a (nonzero) trilinear form T, on S(ZF + ) ® V, ® V~, such that 

( r. (' xi) .x) T((~ ® ok) ® v ® u) = T~ O(x)cb ® It v ® ud . 

T~ then satisfies Tl(to,(g, h),b ® It(g)v ® tr(h)u) = TI(~ ® v ® u), where we 
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restrict g to be in Sp(4, F), and to~(1, h) acts by left translation on ¢. Now, x is a 
quotient of a minimal principal series representation p of GSp(4, F), induced 
by a (quasi) character ~ of B, the Borel subgroup. Replace n by p~. Identify the 
functions in p~ with their restrictions to Sp(4, F). By Frobenius reciprocity 
(Theorem 5.3.2.1 in [W]), we get a bilinear form T~ on S ( Z ]  ) @ V, such that 

u(h) 

for b ~ B  A Sp(4, F). 

Considering the action of to~(b, 1) with 

and realizing Z7 = XF • XF, it can be shown that when regarding ~ as a 
distribution on Z~ with values in Vo, then it is supported on X0 = 
{(x~, x2)[ Gr(x~, x2)--0}, with no transversal derivatives. Xo is the union of 
four orbits under 

t[ °: 0 ESp(4, F) × oso 6, ) 

One orbit is open. The restriction of Tt to the open orbit maps tr (via Frobenius 
reciprocity) to IndnCS°~6'F)~ ' where B' is the Borel subgroup and ~' is a character 
determined by ~ (and vice versa). The restriction to one of the remaining small 
orbits maps tr to some p = IndeCS°~6,F)r, where P ~ B' and r is a finite dimensio- 
nal representation of the parabolic subgroup P. This is impossible since p 
cannot contain a generic representation. (tr is a local component of a cuspidal 
representation of GSO(6, A ) and so a is generic.) Since ~ is determined by (~' 
and hence by) tr, then n is determined by tr. 

As an application we get 

THEOREM 1.5 (The strong multiplicity one theorem for generic represen- 
tations of GSp(4, A)). Let rq, rt2 be two irreducible, automorphic, cuspidal, 
generic representations ofGSp(4, A ). Write rt~ = ®v rt~,v and assume that rq,v 

n2,v for almost all v, then n~ = n~. 

PROOV. Let 8(r~,-) denote that 0-lift of n,- to GSO(6, A). Since the con- 
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stituents of 0(Hi) are all locally equivalent almost everywhere then either 0(n,), 
0(n2) are both cuspidal or both noncuspidal (since PGSO(6) = PGL(4) and 
Z2\ GL(4)'--~GSO(6), see section 0). Assume first that O(ni) are cuspidal and 
hence by the strong multiplicity one theorem (for GL(4)) 0(n~)= 0(n2). By 
Theorem 1.4 I[1 = ~2" Assume now that 0(n~) are noncuspidal. Then (Rallis 
theorem [RI]) the 0-lift of ni to GSO(4, A) is cuspidal, where GSO(4) is the 
connected component  of the group of  similitudes of a split symmetric form in 
four variables. (Recall that GSO(4) = GL(2) × GL(2)/C where C denotes the 
scalars embedded diagonally.) Denote again by 0(n,) the 0-lift of ni to 
GSO(4,A). By the same reasoning as for the previous case 0 (n l )=  0(n2). 
Denote O(nj) = a. Then as in the proof  of Theorem 1.4, there is a place v such 
that 

HOmGsp(4,k,)XGSO(4,k,)(O)v ~ 7ti,v ~ ~v, C)  4 = 0. 

As in [J.PS.S], when v is archimedean, n,,v is completely determined by av (see 
last remark). For v nonarchimedean an analogous proof  to that of Theorem 1.3 
shows that the number  of generic Howe lifts of try to GSp(4,/%) is less than or 
equal to the dimension of the space of Whittaker functionals of try which equals 
one. (see Theorem 3.1 in [S].) This shows that rq.~ ~ n2.~ for all v and hence 

~1 = ~2- [ ]  

§2. The uniqueness theorem for the functional l~ 

In this section F denotes a local nonarchimedean field, and G = GSO(6, F). 
We formulate our main theorem. 

THEOREM 2.1. Let a be an irreducible, admissible representation of G, then 
the space of linear functionals (1.8), l~,, for a, is of dimension at most one. 

In our proof we follow the Gelfand-Kazhdan method (see [B.Z]). Let us 
sketch it and give the details later. We first introduce an involution g --, g~ on G 
which has the properties 

(2.1) R ~ = R ,  

(2.2) z0(r ~) = x0(r), Vr E R 

(Zo is defined in (1.3)). 
Next, we prove the following theorem, where F can be any field an:" ¥ any 

nontrivial character of F. 

THEOREM 2.2. One of the following conditions holds for g E G. 
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(a) There are q,  r 2 ~ R  such that 

rlgr~ -1 = g and  ~(Xo(rlri- 1)) ~ 1. 

(b) There are q, r z ~ R  such that 

r lgr~- l=g ~ and Z0(qr£1)=0. 

The proof of Theorem 2.2 involves technical work. Now let o" be an 

irreducible admissible representation of G and let lt, /2 be two linear func- 

tionals on the space of a, with the property (1.8). Define for ¢0 ~ S ( G )  (the 

Schwartz functions on G) 

(2.3) B(~o) =/2({o • l~) 

where 

- 1  

l'~(v)=ll ~r I v , vGV~.  

- 1  

(1'1 has the property (1.8) with respect to ~-1.) For a linear functional l on Vo, 

fp • l is the vector in V~ obtained as follows. Consider the linear functional 

T~,l(v) = f ~ ~o(g)l(a(g)v)dg. 

T~.t is smooth and hence belongs to the space of the contragradient represen- 

tation # of a (realized in the space of smooth linear functionals on Vo). But 
~ too -~ o# ® tr where ~oo is the central character of tr and g ~ l t (g )  is the 

similitude factor of  g. Fix, then, a bilinear form ( , ) on V~ X Vo (it is 

unique up to a scalar), which has the property 

<a(g)v, ogg - l ( l t ( g ) )a (g )w )=(v , w )  forv ,  w E V ~ ,  g E G .  

We define ¢0, l E V, by the relation T~,t(v) = < ~o, l, v). Note that if p, 2 denote 
respectively the right and left translation representations of G in S(G),  then 

(2.4) (p(g)~o) , l = og~-~(lt(g))tr(g)(~o • 1), 

(2.5) (2(g)~o) • l = ¢0 • O(g- ')l  

(O denotes the algebraic dual of a). In particular, we have 

(2.6) B(p(r)qJ) = ~(Zo(r))B(~o), 

(2.7) B(2(r)~o) = ¥-~(Zo(r))B(~o), r ~ R .  
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We will use Theorem 2.2 and the Ge l fand-Kazhdan  theorem (Theorem 6.10 

in [B.Z]) to conclude: 

THEOREM 2.3. The distribution B is z-invariant. (The action o f t  on B is by 

B*(~a) = B(~o~), and ~*(g) = ~(g*).) 

We now specify the definition of  z. Recall that G acts f rom the left on the 

space X and write the elements of  G as matrices with respect to the decompo-  

sition (1.1). Let a be the reflection on Xwi th  respect to e, that is, a .  e = - e and 

a .  v = v for all v ~ X orthogonal to e (e enters in the definition of  R and 7.0 in 

(1.2), (1.3)). We define for g E G  

(2.8) g '  = u ( g ) a -  tg-  'a. 

Clearly (g ' ) '  -- g and (g~g2)' = glg~. To check (2.1), we note that R is character- 

ized by the fact that its elements preserve e0 and send e to a vector  o f  the form 

teo+ e. Since a preserves e0 and sends e to - e, it is clear that (2.1) is satisfied. 

For  (2.2), let r E R  satisfy r .e = e +teo.  By (2.8), 

r' .e = - a r - l e  = - a . ( e  - teo) = e +teo. 

Thus r .  e = r ~. e and hence z0(r) = xo(r ~) = - t. Theorem 2.1 now follows in a 

s tandard way. 

PROOF OF THEOREM 2.1. We first need a lemma. 

LEMMA 2.4. The z-invariance o f  the distribution B implies that 

{ ~ , ~ S ( a )  [ ~ , r ,  = o} = { ~ , e s t o ) [ ( ( t o ; '  ou) ® ~°~) , /2 = o} 

where ((to; ~ o p)  ® ~o ~J')(g) = tog- ' (#  (g))~o (1~ - ~(g)otga). 

Applying the lemma to the distr ibution B'(~o) = 12(~0 • 1~) we get that 

{qTES(G) [ ~0 , l~ -- 0} = {~o E S ( G )  I ((tog-' o/~) ® ~oa, .)  , /2 = 0}. 

Put  Jr = {~o ~ S ( G )  [ ~0 • l~ = 0}, i = 1, 2. Then J,  = ,/2. Let p denote the fight 

translations o f  G in S(G).  The map At : ~ --" ~0 • l~ defines an isomorphism of  

representations 

(p, S(G)/J,)  = (tog" ol z ® a, V,). 

It is injective by definition, it intertwines the representations by (2.4), and it is 

surjective by the irreducibility of  a.  No w define T:  V o - - V ,  by T(~o , 1 [ ) - -  
~o • 1~. Tis  well defined since ./1 = J2, and it is an au tomorphism of  tog- i o/z  ® a .  
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This implies that T = c~ .id for J E C .  Thus 9,1~ = ~ "9 .l'l for all ~ES(G). 
This implies that l~ = t~. l~ and hence/2 = c~. Ii. 

PROOF OF LEMMA 2.4. First note that for a linear functional l on V, and 
9~S(G), we have 

(2.9) ~ • l = f ~ ~(g)co,,(lt(g))a(g-l)[X, dg 

where K¢ is a small compact open subgroup of G, depending on ~, and Ix, is 
defined by l~(v) = ([~, v), vv ~ V,,, where 

±L ff ,(v) - m(K~) l(a(k)v)dk. 

m(K~) is the measure of K~. Indeed, let K~ be a small compact open subgroup 
of  G satisfying 9(kg) = 9(g), vg~G,  k~.K~. Then for v ~  V~, we have 

(0 * l, v) = f c  9(g)l(a(g)v)dg 

' L ; o  m(K~) .~ 9(kg)l(a(k)a(g)v)dgdk 

= f c  9(g)ff,(a(g)v)dg 

f c 9(g)c°'~(g))( a(g-l)[r,, v )dg. 

This implies (2.9). To prove the lemma, assume that ~ .1'1 = 0. By (2.4) 
P(g)9 *11 = 0 for all g~G.  By the z-invariance of B, we get that 

B((p(g)~)') = 0 

for all gEG.  Take g°EG and write it in the form gO = / l -  1(go)go. We have 

0 = 12((p(/.t -~(go)go)~) T • l~) 

= f o  (P(# -l(g°)g°)~)~(g)c°~(#(g))12(a(g-t)l[~CcSo)dg 

= f o  (p(lt -~(go)go)~)~(g)co,,(#(g))( [~; a(g-~)l~x,'go)dg 

(K¢~0 = Ktpt,-,t~o~0~,),, and K~ is a small compact open subgroup of  G satisfying 

9(lz(k)ak-lag)=~(g) for all k~K~ and g~G.  We also assume that 
oa,(/z(k)) = 1 for k~K'~). 
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= + fc, (P(lt-'(g°)g°)~°)'(g)°)~(lt(g))(a(g-')[ix"s°' [(;)dg. 

(It is clear that (vi, v2) = 6(v2, vi) for all v~, v2~ V, and that 6 = + 1.) Thus 

0 = ~o (P(U-~(go)go)~O)~(g)o4~(#(g))(a(g - ,)[~r,,g°, [2x,,,)dg 

= f o  (p(lt -'(go)go)~O)~(g)l'i(a(g)[X;)dg 

= fc, ¢(#(ggo ~)g-'otgoa)l't(a(g)[~;)dg 

= fc, ¢(u(g)g-')li(a(gSg)[2K;)dg 

l'l(a(gS) f c, ¢(l~(g)g- l )6 (g ) [2K',dg ). 

Since this is true for any go E G, then 

0 = f o  ¢'(lt(g)g-')a(g)[(;dg 

= fc, ¢'(lt -~(g)g)a(g-~)[2K;dg 

= fc, °)d-'(l~(g))¢"U(g)w°(lt(g))a(g-~)[~;dg 

= (w~ -I °~  ® ¢ ~ )  .12. 

By reversing the steps we get the desired equality. This proves the lemma and 

Theorem 2.1, using Theorem 2.3. [] 

PROOF OF THEOREM 2.3. We verify the assumptions of  Theorem (6.10) in 

[B.Z]. Put  H = R × R. Let H a c t  on G by (r~, r2).g = r~gr~ -l, and on S(G) by 

(rl, r2)- ~0(g) = ~t-l(z0(r l- lr2)~0(r 1- lgr2). 
The assumptions of  Theorem (6.10) of  [B.Z] in this case are the following: 

(a) The action of  H on G is constructive (i.e., the set 

((g, h .g) lgEG,  h EH} is the union of  finitely many locally closed 

subsets o f  G × G). 

(b) For each h ~ H,  there is h, ~ H such that h .  g~ = (h~.g)~ for all g E G. 
(c) z 2 = id. 

(d) If  T is a nonzero H-invar iant  distr ibution on an H-orb i t  Y, then Y~ = Y 

and T ~ = T. 
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The conclusion is that any H-invariant distribution on G is also r-invariant. 

Note that by (2.6), (2.7) our distribution B is H-invariant. 
The condition (a) is implied by Theorem A in 6.15 of [B.Z]. For (b), we have 

(rl, r2) " g~ = g(g  )r lag-  l ar21 = lt(g)a((ar2a)g(ar~- l a)) - l a  = ( (ar2a, ar ia ) .g )L  

(2.1) implies that for (r~, r2)GH, (arza, ar~a) is also in H. Assumption (c) is 
immediate. The verification of (d) requires some work and is linked with 

Theorem 2.2. Let T be a nonzero H-invariant distribution on an H-orbit 

Y = H . g .  This means that 

T(2(rOp(r2)~o) = g/(Xo(ri-~r2))T(~o) for ~o ~ S ( Y ) .  

Let Hg denote the stabilizer of g in H. Denote the character of H, (r~, rE) 

gl(Zo(rF ~r2)) by ~', then since S ( Y )  -~ I n d , ,  1 (compact induction), we have that 

T E Homn(IndCn, 1, ~t) _--__ Homn,(An, /An,  Resn,~t) 

by the Frobenius reciprocity, where An,, An are the modular functions of Hg 

and H. Note that An = 1. 

LEMMA 2.5. An,  = 1 for  all g E G  (i.e., Hg is unimodular).  

We will prove the lemma later. By the lemma, we have to consider the space 

Homz,(1, Resz,~,). Thus, if ResH, q/4: l then T = 0. Since T is nonzero, we 

must have Resu tff = 1. By Theorem 2.2, only the possibility (b) there is valid 
for g, which means that the orbit Y = H .  g is r-invariant. This proves one part 

of(d). It remains to show that T ~ = T. In our case Tis proportional (see 6.12 of 
[B.Z]) to 

= f ~o(h - ~ . g ) ~ - t ( h ) d h  Te( ) 
J tt, \H 

where dh is a right H-invariant meassure on H e \ H .  Let h0 E H satisfy ho L. g = 
g~ and ~(h0) -- 1 (Theorem 2.2 (b)). We have 

= Te(  = f ,,,x,,  o((h - '  )dh. 

Write (h -~ .g)~ = ( /~ )  - ~ . g ~  where ifh = (rl, r2) then/~  = (rE -~, rl-~). So  we get 

= f ~0((ho/~) -1 .g)~u-'(h)dh. T~(¢o) 
art, \H 

Put ho = (r °, r °) and ho* = (r °', r°'). Note that/~J" = ho I and (h*) - ¿ .g  = g¢. The 

change of variables h ~ fl(h) = h~'/7 ¢ is permissible here. Indeed i f  h~ ~ H e then 
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f l (h ,h  ) = h~(fi,  h ~) = h~l~f i  ¢ = h~l~[(h~)- lh~l~ " ~Hsh~' f i  ¢ = Hgf l (h  ). 

Using (2.2). we see that ~(/~(h)) = ~/(h ). Thus. using that Hg is unimodular, we 

get 

= f..,. ~ . h o f l ( f i ; )  - '  " g ) ~ - ' ( h ) d h  T;(~) 

= f,,,,,,~(h' . g ) ( v - ' ( h ) d h  

= T~(~o) .  

This proves part (d). 

PROOF OF LEMMA 2.5. We compute Hg for g 6 G. 
It is enough to do it for representatives ofR \ G / R .  Choose a basis ¢1, e2, e3, e4 

for L (in the notation of(1.1)) such that the matrix ((el, e~)), 1 < i , j  < 4 is equal 

to ,[ l 

1 
w--  1 

1 

We write the elements of G according to the basis eo, el . . . .  , e4, e-0. We find 

three types of representative for R \ G / R .  [xl 
(1) g = b , b EGSO(L)  = GSO(4, F) (#(b) = x y ) ,  

Y 

ix] ix 1 (2) g =  b w2 b' ; w2= 
y y' 

"0 1 

I 0 
1 

1 

0 1 

1 0 

(zeros elsewhere) 

¢3) g = IXb]w31X ,l W3 Ill 
1 
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where a denotes the restriction of the reflection a to L. Take g of type (l). 

Assume that (r~, r2)E H r Write 

1 -- 'vi" whi - ½(v~, vi) 

ri = hi vi 

1 

Then r~g = gr2 is equivalent to 

(2.10) hi = bh2b - 1, 

(2.11) vl = Y - l b  . v v  

Thus v I is determined by v2 and (2.10) means that h2 belongs to the subgroup D 

of  SO(L) which preserves the vectors e and b - i. e. Thus Hg ~ D .  L which is 

unimodular. 

Now let g be of type (2) and let (r~, r2) E Hg. Write r~ as before and 

[~ lel 
w2 = M 

te 4 

according to the decomposition (1.1) where [o 
M =  1 

1 

Then rig = gr  2 implies that 

(2.12) 

[l tvlw  VlV ][x,4 vii 

o] 
e2 
0 

] Ix h~b w2 b ' h 2 1  

Y 

1 - % . w  -~(v2, v2) 
- -  g I4 v2 

1 

Equating both sides of  (2.12) we get the following equations: 

(2.13) ' v lwhlbel  = O, 

(2.14) hlbel = b e l ,  

(2.15) 'e4b ' hF  ~ = 'e4b', 
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(2.16) t e 4 b ' v 2  = O, 

(2.17) - -  y ' t V l  W h l b e  4 = x~etb'v2, 

(2.18) x t e lb ' h i  -1 - ' v lwh lbMb 'h21  - ½(vl, vl)yte4b'h21 = x te tb  ', 

(2.19) h l b M b ' h {  1 + yvl 'e4b 'h{  I = - x'beltv2w + bMb ' ,  

(2.20) y'h,be4 = - ½(v2, v2)x'bet + bMb'v~ + y'be4. 

We will show that the solution of this system of equations is the following: 
First, the expressions of v, and h~ via g, v2 and h2 are 

(2.18)' - ' v t w b  = xtel + ( y ' - l x t e l b ' h i - t v 2  + x t e lb 'h{ lb ' - l e4 ) t e4  

- x t e l b ' h {  lb' - 1, 

(2.20)' 

1 - x'(v2, h2b ' -  le2) - -  x ' ( v 2 ,  h2b'-re3) 

b - l h l b  = 0 z 0 
0 0 z -~ 

0 0 0 
d©f 
= T(r2); 

- ½ y' -'x'(v2, v2) ] 
y'-l(e3, b'v2) [ 
Y' -'(el2, b'v2) l 

h 2 and v 2 satisfy the following conditions: 

(2.15)' b 'hE lb' - l = I 
1 * * 

0 z - l  0 • 
0 0 z • 
0 0 0 1 

(and of course, h2 e = e ) ,  

(2.16) te4b'v2 = 0, 

(2.21) T(r2)b - ' e  = b - ' e .  

We note that (2.15)' is another form of (2.15), and (2.21) follows from 

(2.20)'. Now (2.15)' says that h2 belongs to the subgroup of SO(L) which fixes e 
and the isotropic vector wtb'e4. Equations (2.16), (2.21) give conditions on v2. 
Indeed, let 

[i b - l e  -_ 

4 
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then  by  (2.21) and  (2.20) '  

- (v2, h2b' - 'e2)62 - (v2, h2b'-1e3)63 - ½ y ' - ' ( v 2 ,  J'z)64 = O, 

Z6:, + y' -l(e3, b'v2)64 = ~2, 

z-163 + y ' -1(e2,  b'v2)6 4 --  6 3. 

I f64 = O, then  6263 ÷ O, ((e, e) = 1), and  h e n c e  (z -- 1 and)  

Thus  v2 is o f  the  fo rm  

(v,  h2b' - le3) = - 63-162(v2, hzb '  - iv2) .  

el  

v2 = h2b'  - i c2 
__ 62 - 163C 2 , Cl, C 2 ~ F .  

0 

I f64  ÷ 0 then  (e3, b'v2) = y'64-162(1 - z)  and  (e3, b'v2) = y'64163(1 - z - I )  and  

so 

v2 = b '  - 1 y ' (  1 - z)64-162 = 
y'(1 1)64 , z te2b 'h2b' - le2,  c ~ F .  

N o w  it is easy to  see tha t  in the  first case d c l d c J h 2  and  in the  second  dcdh2 are  

u n i m o d u l a r  measures  on  Hg. 

It r ema ins  to show (2.18) '  and  (2.20) ' .  

PROOF OF (2.18)' .  We have  

- tvl w h l b M b ' h i -  ~ (2.19)_ t• l w (  - yFite4 b 'h21 - x'bez~v2 w + b M b ' )  

(z.14)+(Zl3) y(Vl, Vl)te4b'hi- 1 _ tvl w b M b ' .  

Subs t i tu te  in (2.18): 

(*) x t e l b ' h z l  + ½ y (v l ,  | 'l)te4b'hi- 1 - t v l  w b M b '  = xte~ b' .  

We also have  

- y ' tv lWhlbe4 (2"2°)- tv lw(  - ½(v2, v2)x'be~ + bMb'v2  + y 'be4)  

(2.13)+(2.14) 
= - tVl w b M b ' v 2  - y'tVl wb¢4. 
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Substitute in (2.17): 

(**) - tvl wbMb'v2  - y'tvl wbe4 = xtel b'v2. 

Multiply (,) by v2 from the right, compare with (**), and use (2.15) and (2.16) 
to obtain 

- tvl wbe4 = y '  - lxtel b ' h 2  ~ rE. 

Using this, (,), (2.14) + (2.13) (i.e., tvlwbe~ = O) and (2.15)' we get 

***) 
- t v l w b  ffi ( - tVl wbel )te I -[- ( - -  tl~ I w b M )  + ( - t v~  wbe4)te4 

= xtel + (y'-lxtelb'hi-lv2 - ½y(vl, vl))'e4 - x te lb 'h21b  ' -1 

Use this to compute (easily), using (2.15)', 

(tbWVl, tbWVl) = _ 2x2te lb ,h£  lb,-re4" 

But (tbwvl, 'bwvt) = xy(v l ,  vl) and so 

- ~ ( v l ,  v l ) =  x te lb 'h21b ' - Ie4 .  

Substitute this in (***) to get (2.18)'. 

PROOF OF (2.20)'. (2.20) and (2.14) can be written together as follows: 

hlb 

1 

0 

0 

1 

= b  

1 0 0 - ½ y '  - Ix'(v2, v2) ] 

0 0 0 y'-I(e3, b'v2) I 

0 0 0 y , - l (  , b ' v2  ) i 
0 0 0 1 ~ ] 

Multiplying (2.19) from the right and using (2.15)', we get 

h l b M  = b 

[~ -- X'(V2, h2b' - 1 ¢ 2 )  - -  X'(V2, h2b' - le3) 0 ] 
z 0 0 
0 z -1 0 
0 0 0 

Adding the last two equalities gives (2.20)'. 

Let g be of type (3). We can write g in the form 

Ix ] g =  b w3 

Y 

(#(b)=xy). 

Let (rl, r2)~ Hg and write 
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r~ = 
1 - vi 'whi - ½(vi, vi) ] 

hi  Vi ] ' 
1 

then rzg = gr2 implies that v~ = v2 = 0 and h~ -- bh2b- ~ (note that  h2a = ah2). 
Thus 

Hg ~ h ~ S O ( L )  h(b  - l e )  = b -~ 

which is unimodular.  This proves Lemma 2.5 (and Theorem 2.3, using 

Theorem 2.2). [] 

PROOF OF THEOREM 2.2. We use the same notat ion as for the proof  of  

Lemma 2.5. It is enough to prove the theorem for representatives o f R / G / R .  

Let g be of  type (1), and let (rl, r2)~-Hg where 

ri = hi vi 
1 

then (2.10, 2.11), h~ = bh2b ' - i  and vl = Y - l b v v  Thus 

E R  

xo(r~r{ ~) = (vt, e) - (I,2, e) = (y-~ bv2, e) - (v2, e) = x(v:,  b-~ e) - (I,2, e) 

= (v2 ,  x b - l e  - e ) .  

I f b - ~ e  :# x - l e  then there is v 2 ~ L  such that ~'((v2, x b - ~ e  - e)) ÷ 1 and we are 

in case (a) of  the theorem. I f  b -  le --- x -  te then, since/z(b) = xy we get x = y 

and so 

g = x  
[1 ] 

x -  Ib , ( x -  lb)e = e. 
1 

Thus g ~ x  .R,  hence we may  assume that  b = xI4 and g = xI6. We have 

g" = ].l(g)olg-Iol = X 2 X -  I16 = X I  6 = g ,  and so we are in case (b) o f  the theorem. 

Let now g be o f  type (2). Assume that  (ut, u2)EHg where 

1 - 'viw ~(vi, vi) ] 

ui = 14 ~ i ] .  
I 

Then by (2.18)', we have 

- tvt w b  = ( y '  - l x t e l b ' v 2 ) t e 4  = y '  - i x ( e 4 ,  b 'v2) te4  
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and hence 

v ,  = - (yy') -'(e4, b'v2)be,. 

By (2.16), (2.20)', we have 

v 2 = c b ' - ~ e l ,  c E F .  

Thus vl = - (yy')-Icbel, h = cb ' -1e l ,  and so 

.~o(UlU{ I) = (vl, e) - (v2, e)  = - c ( ( y ' ) - l b e l  + b ' - I e l ,  e).  

Thus if ( ( y y ' ) -  lbe~ + b ' -~e t ,  e ) ~  O, we can find c E F such that ~(Xo(U~UZ 1)) 

1 and we are in case (a). Now, assume that 

(2.22) ((yy')-Ibe~ + b'-1el, e) = 0. 

We show that g satisfies condition (b) of the theorem. So let us solve the 
equations 

f r lgr~ l = g~, 

Xo(rlr£ ') = 0. 
(2.23) 

Write 

1 - 'viwhi - ½(vi, vi)] 
r~ = h~ vi E R .  

1 

We look at the first equation of (2.23). Write it in the form 

(2.24) 

[l'Wh"Vl[X ][x ] 
h, vl b w~ b 'h i -  l 

1 y y'  

1 - tv2w ~(v2, v2) ] 
= l ~ ( g ) a g - t a  I 4 V: ].  

Equating both sides of (2.24), we get the following equations: 

(2.25) x '  htbel = ,u( b b ' ) x -  l ab '  - l el, 

(2.26) y t e4b 'h{  I = p(bb')y' -%4b-la ,  

(2.27) 'vl wh,bel = O, 
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(2.28) 

(2.29) 

(2.30) 

te4b - l a v  2 = O, 

- y ' t v l w h l b e 4  = / z ( b b ' ) x '  - l t e l b - l a v ~ ,  

x t e l b ' h i -  l _ tvt wht  b M b ' h ~ -  ' - ~ ( v l  v l ) t e 4 b ' h f  i 

= / ~ ( b b ' ) x '  - ' t e l b -  t a,  

h l b M b ' h ~  l + y v : e 4 b ' h f  I 
(2.31) 

= - x - l # ( b b ' ) a b '  - l e : v 2 w  + ~ ( b b ' ) a b ' - I M b - ' a ,  

I~ - l ( b b ' ) y ' h l b e 4  
(2.32) 

~-- - -  ½ X - I ( v 2 ,  v2)otb'-lel -F a b ' - l M b - l a v 2  + y - l a b ' - l e 4 .  

We can find hi satisfying (2.25) if and only if x ' ( b e l ,  e ) =  

l t ( b b ' ) x - l ( a b ' - ' e l ,  e) .  Since l t ( b b ' )  = x y x ' y '  and ae  = - e we get 
( ( y y ' ) - ' b e t  + b ' - ' e , ,  e ) =  0, which is condit ion (2.22). Equation (2.26) is the 

same as (2.25) for h f  '. Indeed, write (2.26) as follows: 

y t e l w b ' h 2 '  = l t ( b b ' ) y '  - '  t e l W b - ' a ,  

then 

y th  2 ' t b 'we i  = ~ (  b b ' ) y '  - ' t a t b -  ' wel.  

Shift w to the left and cancel it, then 

y l . t (b ' )h:b '  - ' e ,  = ~t(bb') l t  - ' ( b ) y '  - ' a b e l .  

Since a commutes  with h2, we get 

hi- 'bet = y y ' a b '  - l e  I 

which is the equation (2.25) for h2-- '. So we choose h2- ' = h i .  

Write v, = Y~-I tih,bei and v2 = Z:= ~ z, abe , .  We show that the solution of  the 

system of  equations is v2 = - a h f - ' v t ,  and h,, v, should satisfy (2.25), (2.31). 

Note that (2.27) says that t4 = 0, (2.28) says that z4 = 0 and (2.29) says that 

z, = - tl. Consider now equation (2.30). 

We have 

# ( b b ' ) x '  - l t e l b -  Zah2b' - l  = x te l  _ t v l w h , b  M _ ½y(v,,  vl)te4 

3 
= x te ,  - y. t : e : b t h , w h , b M  - ylt(b)t2t3te4 

i - I  

= x t e l  - -  It (b)hte2 - It (b)/2te3 - yfl (b)t2t3te4 
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hence 

(2.30)' tel b - l a h 2 b ,  - 1 = ( y y , )  - I tel _ y ,  -1/3re2 _ y ,  - l/2te3 

- y y '  - ll213te4" 

Consider equation (2.32): 

- l (bb ' )y 'b 'ahlbe4 = ½x-l(v2, v2)e I -q- M b - l a v 2  + y -  le 4 

3 
= - yz2z3el + ~. z~Me~ + y '  - t e  4 - -  - yz2z3el + z2e2 + z3e3 + y- le4 .  

i= l  

We have 

t(/~ - l(b b, )y ,b ,  ahlbe4) = ~ - l(bb')y ' te~ w ' (b 'ah lb  ) = y ' te lb  - I h 7  ~ab' a w  

-- y ' t e l b - l a h 2 b '  -¿w,  

since h2 = h~- l and a commutes  with h i .  Thus we get 

(2.32)' tel b - l a h 2 b ,  - i = _ y y ,  - i z 2 z 3 t e 4  + y ,  - l z 3 t e 2  + y ,  - i z 2 t e 3  

+ (yy ' )  - I te I. 

Comparing with (2.30)' we get z2 = - t2 and z3 = - h. Thus v2 = - ah~-Ivt, 

where I,~ = Z~-i t~h~be~ and h~ satisfies (2.25). 

It remains to satisfy equation (2.31). Write it as follows: 

(2.31)' 
yvlte4b'hi- l + x -  ll.t(bb')ab' - le :v2w,  

= # ( b b ' ) a b '  - I M b -  la - h tbMb'h~-i .  

The left side of  (2.31) equals, using (2.25), (2.26), 

# ( b b ' ) y '  - I v l t e 4 b -  lot - -  X'hl b C l t v l t h { - I t o t w  

3 3 
= l . t ( b b ' ) y ' - I h l b  ~ t i e i t e 4 b - l a - x ' h l b e l  ~ titeitbtaw 

i - I  im l  

= k t ( b ) x t h l b ( i ~ = l  t i (e i ted--e l te iw))b- lo t  

= I~(b)x'h~b 
0 0 

0 0 

0 0 

0 

t2 b - l a .  
t3 
0 
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Thus (2.31)' can we written as follows (recall that h2 = h~-I): 

(2.31)" l t (b)x '  

[ ~ - -  t 3  - -  t2 0 
0 0 t 2 
0 0 t 3 
0 0 0 

= la(bb')(b'hlab) - I M  - M(b 'h lab ) .  

By (2.26) 

(b'hlab) -l = 

(yy')-' 

0 

0 

0 

- ~  -d~ 

A 

0 0 

f 

cz 

C3 

(xx')-' 

where A ~ GO(2, F) (the group of  similitudes of the form (o 4)). Since det a = 

- 1 and b, b '~GSO(L)  (i.e., de tb  =p(b)2), we must have detA = - p ( A )  

and so A must be of  the form 

;) 
We have 

tel(b,hlab ) -1 = (yy , ) - l te l  _ date2 _ d2te3 + fie4 

and by (2.30)' (d2, d3) = y '  - ~(t2, h) and hence 

\c3/ d~ 

Thus the right hand side of (2.31)" equals 

l~(bb') 

'0 - d3 

0 

0 

0 0 

-d~O 

0 

A 

0 

0 0 

"0 

0 

0 

0 

0 

A - I  

0 

0 0 

--xx'A-t(¢2) 
¢3 

0 0 
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"0 

0 

0 

0 

- I~(b)x' t3 - # ( b ) x ' t 2  

/.t(A) - IA - A  -l 

0 0 

We have 

l t ( A ) - ' - A - ~ = ( r s ) - ~ ( ~  

0 

l t(  b ) x '  fi 

lt(b)x't3 

0 

0 ) - ( r 0 _ ,  s0 ' )=(00  ~).  

r i 

such that 

(2.33) rlgr21 = g L  

[1 ] 
hi ER 

1 

Note that Zo(r~r£') = 0. E q u a t i o n  (2 .33)  is equivalent to 

~h~bh~- ~ = p ( b ) b  - i ,  
(2.33)' / 

[ h i e  = e,  i = 1, 2. 

It is easy to see that there is h~ ~ SO(L) which satisfies 

h t e =  e 

hlbe = l~(b ) b - l e .  

We find 

This shows that equation (2.31)" is satisfied. We have 

Zo(rlr£ 1) = (vl, e )  - (v2, e )  = ( - ah{-~v2, e)  - (v2, e) 

= (h{-lv2, e)  - (v2, e)  = (v2, e) - (v2, e)  = O. 

This proves (2.33). 
Let g be of type (3). We show that it satisfies condition (b) of the theorem. 

Write g in the form 

Is ] g =  b w3. 

Y 
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Thus hi and h2=/~-l(b)bhlb solve (2.33)'. This completes the proof of 
Theorem 2.2. [] 
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